In the world of data analysis, it’s often necessary to restructure data to suit various analytical needs. One such operation is unpivoting, which involves converting wide-form data into a long-form format. The Pandas library in Python offers a powerful tool called melt function that can help you achieve this transformation efficiently. In this article, you will learn how to use the Pandas melt function to reshape wide data into a long data format.
Why Unpivot Data and the Benefits of Using Pandas Melt
The Pandas melt function is a valuable data reshaping tool that allows you to unpivot a DataFrame from a wide to long format. It can be particularly useful in cases where you need to analyze data in a more granular fashion or when you want to transform data for visualization purposes.
Unpivoting data, refers to the process of converting wide-format data into long-format data.
By doing this, you can:
- Make your data more readable, especially for large datasets.
- Simplify data analysis, as long-format data is more compatible with various analytical tools and methods.
- Enhance data consistency, as long-format data is easier to compare and manipulate.
The Pandas Melt function offers numerous advantages, such as:
- A user-friendly syntax that makes it easy to implement.
- Flexibility in handling various data types and formats.
- Seamless integration with other Pandas functions and tools.
Understanding the Pandas melt() Function
The melt()
function takes a Pandas DataFrame and transforms it by melting multiple columns into a single column, while keeping the identifier variables intact. This can make the data easier to work with and is often a precursor to other data manipulation tasks.
Here’s a breakdown of the function’s syntax and its key parameters:
pandas.melt(frame, id_vars=None, value_vars=None, var_name=None, value_name='value', col_level=None, ignore_index=True)
frame
: The DataFrame you want to melt.id_vars
: A list of columns to use as identifier variables. These columns will remain unchanged during the melting process.value_vars
: A list of columns that you want to melt. If not specified, all columns not set asid_vars
will be melted.var_name
: The name of the new column that will store the column headers from the melted columns. Defaults toNone
, in which case the column name will be set as “variable”.value_name
: The name of the new column that will store the values from the melted columns. Defaults to “value”.col_level
: If columns are a MultiIndex, this specifies which level(s) theid_vars
andvalue_vars
refer to. Defaults toNone
.ignore_index
: Whether to reset the index in the output DataFrame. Defaults toTrue
.
Loading a Sample Pandas DataFrame
I’ve included a sample Pandas DataFrame below so that you can follow the instruction line-by-line. Simply copy the code and paste it in your preferred code editor. Although your results will undoubtedly differ, feel free to use your own DataFrame if you have one.
import pandas as pd
data = {'name': ['Alice', 'Bob', 'Charlie', 'David'],
'age': [25, 30, 35, 40],
'gender': ['F', 'M', 'M', 'M']}
df = pd.DataFrame(data)
print(df)
Output:
# name age gender
# 0 Alice 25 F
# 1 Bob 30 M
# 2 Charlie 35 M
# 3 David 40 M
In this example, the DataFrame has three columns: ‘name’, ‘age’, and ‘gender’, and four rows with the corresponding values. You can customize the data and column names to fit your need.
Using the Pandas melt() Function to Unpivot a DataFrame
In this part, we’ll concentrate on using the pandas melt
function’s id_vars
parameter to unpivot a DataFrame.
When it comes to melting a DataFrame, the term id_vars
denotes the identifier variables, which are the columns in your DataFrame that remain unaltered. The other columns are transformed from a wide to long format. These identifier variables offer context for the resulting restructured DataFrame.
Here’s an example:
import pandas as pd
data = {'name': ['Alice', 'Bob', 'Charlie', 'David'],
'age': [25, 30, 35, 40],
'gender': ['F', 'M', 'M', 'M']}
df = pd.DataFrame(data)
melted_df = pd.melt(df, id_vars=['name'], value_vars=['age', 'gender'],
var_name='variable', value_name='value')
print(melted_df)
Output:
name variable value
0 Alice age 25
1 Bob age 30
2 Charlie age 35
3 David age 40
4 Alice gender F
5 Bob gender M
6 Charlie gender M
7 David gender M
In this code block, we first define the data
dictionary to create the initial DataFrame, and then use it to create the DataFrame object df
.
Then we apply the melt()
function to the df
DataFrame in one line, and store the resulting DataFrame object in melted_df
. We specify the same parameters as before, with id_vars
as the ‘name’ column, value_vars
as the ‘age’ and ‘gender’ columns, and var_name
and value_name
as the new column names.
Finally, we print the resulting DataFrame melted_df
to verify the output.
Using Multiple Identifier Variables in Pandas melt()
A DataFrame can also be melted using numerous variables. We can give in a list of column labels to the Pandas melt function’s id_vars=
in order to utilise multiple columns.
Here’s an example:
import pandas as pd
data = {'name': ['Alice', 'Bob', 'Charlie', 'David'],
'age': [25, 30, 35, 40],
'gender': ['F', 'M', 'M', 'M']}
df = pd.DataFrame(data)
print(df)
melted_df = pd.melt(df, id_vars=['name', 'gender'], value_vars=['age'],
var_name='variable', value_name='value')
print(melted_df)
Output:
name age gender
0 Alice 25 F
1 Bob 30 M
2 Charlie 35 M
3 David 40 M
name gender variable value
0 Alice F age 25
1 Bob M age 30
2 Charlie M age 35
3 David M age 40
In this example, we load the DataFrame using the dictionary approach and print it to verify the data.
We then use the melt()
function to unpivot the ‘age’ column into rows, while using ‘name’ and ‘gender’ columns as identifier variables. We store the resulting DataFrame in melted_df
, and print it to verify the output.
The resulting DataFrame melted_df
has four columns – ‘name’, ‘gender’, ‘variable’, and ‘value’. The ‘name’ and ‘gender’ columns are identifier variables, while the ‘variable’ and ‘value’ columns contain the unpivoted data.
Using Value Variables in the Pandas melt() Function
By default, Pandas will use all remaining columns in the value_vars=
parameter, meaning that all columns will be unpivoted. The value_vars
parameter in the melt()
function specifies the columns to be unpivoted. You can select one or more columns as value variables.
Here’s an example of using the ‘age’ and ‘gender’ columns as value variables:
import pandas as pd
data = {'name': ['Alice', 'Bob', 'Charlie', 'David'],
'age': [25, 30, 35, 40],
'gender': ['F', 'M', 'M', 'M']}
df = pd.DataFrame(data)
print(df)
melted_df = pd.melt(df, id_vars=['name'], value_vars=['age', 'gender'],
var_name='variable', value_name='value')
print(melted_df)
Output:
name age gender
0 Alice 25 F
1 Bob 30 M
2 Charlie 35 M
3 David 40 M
name variable value
0 Alice age 25
1 Bob age 30
2 Charlie age 35
3 David age 40
4 Alice gender F
5 Bob gender M
6 Charlie gender M
7 David gender M
In this example, we load the DataFrame using the dictionary approach and print it to verify the data.
We then use the melt()
function to unpivot the ‘age’ and ‘gender’ columns into rows, while using ‘name’ column as the identifier variable. We store the resulting DataFrame in melted_df
, and print it to verify the output.
The resulting DataFrame melted_df
has three columns – ‘name’, ‘variable’, and ‘value’. The ‘name’ column is the identifier variable, while the ‘variable’ column contains the names of the unpivoted columns, and the ‘value’ column contains the corresponding values.
Using Multiple Value Variables in Pandas melt()
By passing multiple column labels into the value_vars=
parameter of the Pandas melt()
function, you can un-pivot multiple columns.
Here’s an example of using the ‘age’ and ‘gender’ columns as multiple value variables:
import pandas as pd
data = {'name': ['Alice', 'Bob', 'Charlie', 'David'],
'age': [25, 30, 35, 40],
'gender': ['F', 'M', 'M', 'M']}
df = pd.DataFrame(data)
print(df)
melted_df = pd.melt(df, id_vars=['name'], value_vars=['age', 'gender'],
var_name='variable', value_name='value')
print(melted_df)
Output:
name age gender
0 Alice 25 F
1 Bob 30 M
2 Charlie 35 M
3 David 40 M
name variable value
0 Alice age 25
1 Bob age 30
2 Charlie age 35
3 David age 40
4 Alice gender F
5 Bob gender M
6 Charlie gender M
7 David gender M
n this example, we load the DataFrame using the dictionary approach and print it to verify the data.
We then use the melt()
function to unpivot the ‘age’ and ‘gender’ columns into rows, while using ‘name’ column as the identifier variable. We store the resulting DataFrame in melted_df
, and print it to verify the output.
The resulting DataFrame melted_df
has three columns – ‘name’, ‘variable’, and ‘value’. The ‘name’ column is the identifier variable, while the ‘variable’ column contains the names of the unpivoted columns, and the ‘value’ column contains the corresponding values.
Customizing the Names of Value and Identifier Variables in Pandas melt()
By default, Pandas assigns the column names ‘variable’ and ‘value’ when melting a DataFrame. To change this default behavior, use the parameters var_name= and value_name= to provide custom column names.
Here’s an example of customizing the names of value and identifier variables:
import pandas as pd
data = {'name': ['Alice', 'Bob', 'Charlie', 'David'],
'age': [25, 30, 35, 40],
'gender': ['F', 'M', 'M', 'M']}
df = pd.DataFrame(data)
print(df)
melted_df = pd.melt(df, id_vars=['name'], value_vars=['age', 'gender'],
var_name='attributes', value_name='data')
print(melted_df)
Output:
name age gender
0 Alice 25 F
1 Bob 30 M
2 Charlie 35 M
3 David 40 M
name attributes data
0 Alice age 25
1 Bob age 30
2 Charlie age 35
3 David age 40
4 Alice gender F
5 Bob gender M
6 Charlie gender M
7 David gender M
In this example, we load the DataFrame using the dictionary approach and print it to verify the data.
We then use the melt()
function to unpivot the ‘age’ and ‘gender’ columns into rows, while using ‘name’ column as the identifier variable. We customize the names of the resulting variables by specifying ‘attributes’ and ‘data’ as the names of the var_name
and value_name
parameters, respectively. We store the resulting DataFrame in melted_df
, and print it to verify the output.
The resulting DataFrame melted_df
has three columns – ‘name’, ‘attributes’, and ‘data’. The ‘name’ column is the identifier variable, while the ‘attributes’ column contains the names of the unpivoted columns, and the ‘data’ column contains the corresponding values.
Retaining the Original DataFrame Index in Pandas melt()
By default, Pandas will replace the previous index. You can alter this default behavior by adjusting the ignore_index= parameter. It is set to True by default, but if you change it to False, the original index will be preserved.
Here’s an example:
import pandas as pd
data = {'name': ['Alice', 'Bob', 'Charlie', 'David'],
'age': [25, 30, 35, 40],
'gender': ['F', 'M', 'M', 'M']}
df = pd.DataFrame(data)
print(df)
melted_df = pd.melt(df, id_vars=['name'], value_vars=['age', 'gender'],
var_name='variable', value_name='value', ignore_index=False)
print(melted_df)
Output:
name age gender
0 Alice 25 F
1 Bob 30 M
2 Charlie 35 M
3 David 40 M
name variable value
0 Alice age 25
1 Bob age 30
2 Charlie age 35
3 David age 40
0 Alice gender F
1 Bob gender M
2 Charlie gender M
3 David gender M
In this example, we load the DataFrame using the dictionary approach and print it to verify the data.
We then use the melt()
function to unpivot the ‘age’ and ‘gender’ columns into rows, while using ‘name’ column as the identifier variable. We customize the names of the resulting variables by specifying ‘variable’ and ‘value’ as the names of the var_name
and value_name
parameters, respectively. We set the ignore_index=False
parameter to the melt()
function to retain the original DataFrame index. We store the resulting DataFrame in melted_df
, and print it to verify the output.
The resulting DataFrame melted_df
has four columns – ‘index’, ‘name’, ‘variable’, and ‘value’. The ‘index’ column contains the original DataFrame index, while the other columns contain the unpivoted data.
Using col_level in the Pandas melt Function with Multi-Index Columns
The col_level
parameter is useful when dealing with DataFrames that have MultiIndex columns. It allows you to specify which level of the column index should be utilized when melting the DataFrame.
Here’s an example:
import pandas as pd
data = {'name': ['Alice', 'Bob', 'Charlie', 'David'],
('info', 'age'): [25, 30, 35, 40],
('info', 'gender'): ['F', 'M', 'M', 'M']}
df = pd.DataFrame(data)
print(df)
melted_df = pd.melt(df, id_vars=['name'], value_vars=[('info', 'age'), ('info', 'gender')],
var_name=['variable_1', 'variable_2'], value_name='value')
print(melted_df)
Output:
name info
age gender
0 Alice 25 F
1 Bob 30 M
2 Charlie 35 M
3 David 40 M
name variable_1 variable_2 value
0 Alice info age 25
1 Bob info age 30
2 Charlie info age 35
3 David info age 40
4 Alice info gender F
5 Bob info gender M
6 Charlie info gender M
7 David info gender M
In this example, we load the DataFrame using the dictionary approach and print it to verify the data.
We then use the melt()
function to unpivot the ‘age’ and ‘gender’ columns into rows, while using ‘name’ column as the identifier variable. We use the value_vars
parameter to specify the levels of the column index to be used as value variables, and the var_name
parameter to specify the names of the resulting variables. We store the resulting DataFrame in melted_df
, and print it to verify the output.
The resulting DataFrame melted_df
has four columns – ‘name’, ‘variable_1’, ‘variable_2’, and ‘value’. The ‘name’ column is the identifier variable, while the ‘variable_1’ and ‘variable_2’ columns contain the names of the levels of the column index, and the ‘value’ column contains the corresponding values.
Wrap up
Well done on completing this extensive guide on the Pandas melt function! We’ve delved into a diverse range of topics, techniques, and case studies that showcased the numerous capabilities of this robust data handling instrument.
Using melt()
, we can easily transform wide data into long data, which is useful for visualizations, statistical analysis, and machine learning models. Additionally, the function is capable of handling complex and multi-index data structures, making it a versatile tool for data manipulation.
Overall, the melt()
function provides a simple and efficient solution for data reshaping in pandas, making it a valuable tool for data analysts and data scientists.
Find out more about the melt function by checking out its official documentation:
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.melt.html
Thanks for reading. Happy coding!